Áù¾ÅÉ«ÌÃ

UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Applications for Admission Schedule
Examinations Schedule
Fees Schedule
Academic Schedule
Undergraduate Degrees with a Major
Collaborative Degrees
Combined Degrees
Minor Programs
Student Services
Undergraduate Admissions
Academic Regulations
Tuition and General Fees
English for Academic Purposes Program
Faculty of Communication and Culture
Faculty of Education
Faculty of Environmental Design
Faculty of Fine Arts
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Humanities
Faculty of Kinesiology
Faculty of Law
Faculty of Medicine
Faculty of Nursing
Schulich School of Engineering
Faculty of Science
Faculty of Social Sciences
Faculty of Social Work
Faculty of Veterinary Medicine
Collaborative Programs
Co-operative Education/Internship
Continuing Education
Awards and Financial Assistance
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
C
D
E
F
G
H
I
J, K
L
M
Management Information Systems MGIS
Management Studies MGST
Manufacturing Engineering ENMF
Marine Science MRSC
Marketing MKTG
Mathematics MATH
Mechanical Engineering ENME
Medical Physics MDPH
Medical Science MDSC
Medicine MDCN
Museum and Heritage Studies MHST
Music Education MUED
Music History and Literature MUHL
Music Performance MUPF
Music Theory and Composition MUTC
N, O
P
R
S
T, U
V, W, Z
About the Áù¾ÅÉ«ÌÃ
Where
Who's Who
Glossary of Terms
Contact Us
Summary of Changes
Áù¾ÅÉ«Ìà Calendar 2009-2010 COURSES OF INSTRUCTION Course Descriptions M Mathematics MATH
Mathematics MATH

Instruction offered by members of the Department of Mathematics and Statistics in the Faculty of Science.

Department Head - T. Bisztriczky

Note: For listings of related courses, see Actuarial Science, Applied Mathematics, Pure Mathematics, and Statistics.

Mathematics 113       Eigenvalues and Eigenvectors
A review of these particular topics for students who have completed Mathematics 211 or equivalent.
Course Hours:
E(8 hours)
Notes:
Open to students with credit in Mathematics 211 or 221 or equivalent.
Also known as:
(formerly Mathematics 013)
NOT INCLUDED IN GPA
back to top
Mathematics 114       Multivariate Topics from Applied Mathematics 219
Multiple Integration and applications.
Course Hours:
E(16 hours)
Prerequisite(s):
Mathematics 253 or 263 or 283 or consent of the Department.
Notes:
Designed to rectify a deficiency for those students whose Calculus I and II courses did not cover the multivariate topics from Applied Mathematics 219.
Also known as:
(formerly Mathematics 014)
NOT INCLUDED IN GPA
back to top
Mathematics 117       Topics from Applied Mathematics 217
Inverse functions and inverse trigonometric functions. Hyperbolic and inverse hyperbolic functions. Indeterminate forms. Applications of integration.
Course Hours:
E(8 hours)
Prerequisite(s):
Mathematics 249 or 251 or 281 or consent of the Department.
Notes:
Designed to rectify a deficiency for those students whose first Calculus course did not cover some of the topics from Applied Mathematics 217.
Also known as:
(formerly Mathematics 017)
NOT INCLUDED IN GPA
back to top
Junior Courses

Note: Students who have not studied mathematics for some time are strongly advised to review high school material thoroughly prior to registering in any junior level mathematics course.

Mathematics 205       Mathematical Explorations
A mathematics appreciation course. Topics selected by the instructor to provide a contemporary mathematical perspective and experiences in mathematical thinking. May include historical material on the development of classical mathematical ideas as well as the evolution of recent mathematics.
Course Hours:
H(3-1)
Prerequisite(s):
Pure Mathematics 30 or Mathematics II (offered by Continuing Education).
Notes:
For students whose major interests lie outside the sciences. Highly recommended for students pursuing an Elementary School Education degree.  It is not a prerequisite for any other course offered by the Department of Mathematics and Statistics, and cannot be used for credit towards any Major or Minor program in the Faculty of Science except for a major in General Mathematics.
back to top
Mathematics 211       Linear Methods I
Systems of equations and matrices, vectors, matrix representations and determinants. Complex numbers, polar form, eigenvalues, eigenvectors. Applications.
Course Hours:
H(3-1T-1)
Prerequisite(s):
A grade of 70 per cent or higher in Pure Mathematics 30. (Alternatives are presented in the paragraph titled Mathematics Diagnostic Test in the Program section of this Calendar.)
Antirequisite(s):
Note: Credit for both Mathematics 211 or 221 and 213 will not be allowed.
back to top
Mathematics 213       Honours Linear Algebra I
Systems of equations and matrices, vectors, linear transformations, determinants, eigenvalues and eigenvectors.
Course Hours:
H(3-1T-1)
Prerequisite(s):
A grade of 70 per cent or higher in Pure Mathematics 30.
Antirequisite(s):
Note: Credit for both Mathematics 211 or 221 and 213 will not be allowed.
back to top
Mathematics 249       Introductory Calculus
Algebraic operations. Functions and graphs. Limits, derivatives, and integrals of exponential, logarithmic and trigonometric functions. Fundamental theorem of calculus. Applications.
Course Hours:
H(4-1T-1)
Prerequisite(s):
A grade of 70 per cent or higher in Pure Mathematics 30. (Alternatives are presented in the paragraph titled Mathematics Diagnostic Test in the Program section of this Calendar.)
Antirequisite(s):
Note: Not open to students with 60% or higher in Mathematics 31, except with special departmental permission. Note: Credit for more than one of Mathematics 249, 251, 281, or Applied Mathematics 217 will not be allowed.
back to top
Mathematics 251       Calculus I
Functions and graphs, transcendental functions. Limits, derivatives, and integrals of exponential, logarithmic and trigonometric functions. Fundamental theorem of calculus. Applications.
Course Hours:
H(3-1T-1)
Prerequisite(s):
A grade of 70 per cent or higher in Pure Mathematics 30 and a grade of 50 per cent or higher in Mathematics 31. (Alternatives to Pure Mathematics 30 are presented in the paragraph titled Mathematics Diagnostic Test in the Program section of this Calendar.)
Antirequisite(s):
Note: Credit for more than one of Mathematics 249, 251, 281, or Applied Mathematics 217 will not be allowed.
Notes:
This course provides the basic techniques of differential calculus as motivated by various applications. Students performing sufficiently well in a placement test may be advised to transfer directly to Mathematics 253.
back to top
Mathematics 253       Calculus II
Inverses of trigonometric functions. Methods of integration, improper integrals. Separable differential equations, first and second order linear differential equations, applications.
Course Hours:
H(3-1T-1)
Prerequisite(s):
Mathematics 249 or 251 or 281 or Applied Mathematics 217.
Antirequisite(s):
Note: Credit for more than one of Mathematics 253, 263, 283, or Applied Mathematics 219 will not be allowed.
Notes:
Mathematics 253 or 283 is a prerequisite for many 300-level courses in Pure Mathematics, Applied Mathematics, Statistics and Actuarial Science. Students in programs offered by the Department of Mathematics and Statistics are strongly recommended to take Mathematics 283.
back to top
Mathematics 271       Discrete Mathematics
Proof techniques. Sets and relations. Induction. Counting and probability. Graphs and trees.
Course Hours:
H(3-1T-1)
Prerequisite(s):
Mathematics 211 or 221 or 213.
Antirequisite(s):
Note: Credit for both Mathematics 271 and 273 will not be allowed.
Notes:
Philosophy 279 or 377 is highly recommended to complement this course.
back to top
Mathematics 273       Honours Mathematics: Numbers and Proofs
Introduction to proofs. Functions, sets and relations. The integers: Euclidean division algorithm and prime factorization; induction and recursion; integers mod n. Real numbers: sequences of real numbers; completeness of the real numbers; open and closed sets. Complex numbers.
Course Hours:
H(3-1T-1)
Prerequisite(s):
A grade of 70 per cent or higher in Pure Mathematics 30. (Alternatives are presented in the paragraph titled Mathematics Diagnostic Test in the Program section of this Calendar.)
Antirequisite(s):
Note: Credit for both Mathematics 271 and 273 will not be allowed.
back to top
Mathematics 281       Honours Calculus I
Limits and continuity; Differentiation of functions of one real variable; the Mean Value Theorem and its consequences; Riemann integration; fundamental theorem of calculus; applications.
Course Hours:
H(3-1T-1)
Prerequisite(s):
A grade of 80 per cent or higher in Pure Mathematics 30 and a grade of 50 per cent or higher in Mathematics 31. (Alternatives to Pure Mathematics 30 are presented in the paragraph titled Mathematics Diagnostic Test in the Program section of this Calendar.)
Antirequisite(s):
Note: Credit for more than one of Mathematics 249 or 251 or 281 or Applied Mathematics 217 will not be allowed.
back to top
Mathematics 283       Honours Calculus II
Methods of integration, improper integrals. Sequence and series, Taylor series, functions defined by series. Ordinary differential equations. Partial derivatives.
Course Hours:
H(3-1T-1)
Prerequisite(s):
Mathematics 281 or a grade of B+ or better in Mathematics 249 or 251 or Applied Mathematics 217 or equivalent.
Antirequisite(s):
Note: Credit for more than one of Mathematics 253 or 263 or 283 or Applied Mathematics 219 will not be allowed.
back to top
Senior Courses
Mathematics 311       Linear Methods II
Vector spaces and subspaces. Linear independence. Matrix representations of linear transformations. Gram-Schmidt orthogonalization. Students will complete a project using a computer algebra system.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 211 or 221 or 213.
Antirequisite(s):
Note: Credit will not be given for Mathematics 311 and Mathematics 313
back to top
Mathematics 313       Honours Linear Algebra II
Diagonalization. Canonical forms. Inner products, orthogonalization. Spectral theory. Students will be required to complete a project using a computer algebra system.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 213 or a grade of B+ or better in Mathematics 211 or 221
Antirequisite(s):
Note: Credit for both Mathematics 311 and 313 will not be allowed.
back to top
Mathematics 321       Mathematical Probability
Sample spaces. Discrete probability. Discrete and continuous random variables. Standard distributions. Mathematical expectation and variance. Moments and moment generating functions. Central limit theorem. Functions of random variables. Introduction to statistical inference.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 253 or 263 or 283 or Applied Mathematics 219.
back to top
Mathematics 323       Introduction to Mathematical Statistics
Bivariate distributions. Sampling distributions. Chi-squared, F and t distributions. Estimation. Hypothesis tests (proportions, means, variance, chi-square). Method of moments. Maximum likelihood estimators. Neyman-Pearson lemma. Likelihood ratio tests. Elementary regression and correlation.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 321.
Notes:
Prior or concurrent completion of Mathematics 353 or 381 is strongly recommended.
back to top
Mathematics 331       Multivariate Calculus
Systems of ordinary differential equations. Calculus of functions of several variables. Introduction to vector analysis, theorems of Green, Gauss and Stokes.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 253 or 263 or 283 or Applied Mathematics 219 and either Mathematics 221 or 211.
Antirequisite(s):
Note: Credit for both Mathematics 331 and either 353 or 381 or Applied Mathematics 309 will not be allowed.
Notes:
This course is not a member of the list of courses constituting the fields of Actuarial Science, Applied Mathematics, Pure Mathematics, or Statistics and cannot normally be substituted for Mathematics 353 or 381 in degree programs in any of those fields.
back to top
Mathematics 349       Calculus III
Infinite sequences and series. Polar coordinates, parametric equations, arc length. Vector geometry, differentiation of vector-valued functions. Partial differentiation. Students will complete a project using a computer algebra system.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 253 or 263 or 283 or Applied Mathematics 219; and Mathematics 211 or 221.
Antirequisite(s):
Note: Credit for both Mathematics 349 and 381 will not be allowed.
back to top
Mathematics 353       Calculus IV
Applications of partial differentiation, multiple integrals, vector calculus including Stokes' and the Divergence Theorems.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 349.
Antirequisite(s):
Note: Credit for more than one of Mathematics 353, Mathematics 381, 331 or Applied Mathematics 309 will not be allowed.
back to top
Mathematics 381       Honours Calculus III
Functions of several variables; differentiability, extrema. Implicit and inverse function theorems. Integration of functions of several variables; line integrals; surface integrals. Students will complete a project using a computer algebra system.
Course Hours:
H(3-1T)
Prerequisite(s):
Mathematics 283 or a grade of B+ or better in Mathematics 253 or Applied Mathematics 219; and Mathematics 211 or 221.
Antirequisite(s):
Note: Credit for more than one of Mathematics 331, 353, 381, and Applied Mathematics  will not be allowed. Note: Credit for both Mathematics 349 and 381 will not be allowed.
back to top
Mathematics 401       Special Topics
Higher level topics which can be repeated for credit.
Course Hours:
H(3-0)
Prerequisite(s):
Consent of the Department.
Antirequisite(s):
Note: This course is designed to add flexibility to completion of an undergraduate pure mathematics or general mathematics program.
MAY BE REPEATED FOR CREDIT
back to top
Mathematics 403       Topics in Mathematics for Economics
Techniques of integration. Multiple integrals. Analysis of functions. Continuity. Compact sets. Convex sets. Separating hyperplanes. Lower and upper hemi-continuous correspondences. Fixed point theorems, Optimal control.
Course Hours:
H(3-0)
Prerequisite(s):
Mathematics 211 or 221 and 253 or 263 or 283 or Applied Mathematics 219; or both Economics 387 and 389.
back to top
Mathematics 411       Linear Spaces with Applications
Canonical forms. Inner product spaces, invariant subspaces and spectral theory. Quadratic forms.
Course Hours:
H(3)
Prerequisite(s):
Mathematics 311 and one of 331, 353, or Applied Mathematics 309.
Antirequisite(s):
Note: Mathematics 411 is not open to students with credit in Mathematics 313.
Notes:
May not be offered every year. Consult the Department for listings.
Also known as:
(formerly Applied Mathematics 441)
back to top