|
Instruction offered by members of the Department of Chemistry in the Faculty of Science.
Department Head - P.G. Kusalik
Students interested in taking Chemistry courses are urged to read the advice in the Faculty of Science Program section of this Calendar. Students taking Chemistry courses which have a laboratory component are required to provide evidence that they have successfully completed the Chemical Laboratory Safety Course for Undergraduates prior to the first laboratory class. Students who have not completed this course at some time during their undergraduate program will not be allowed into the laboratory until they do so. Information about this course is available from the Chemistry Undergraduate Affairs Office (SA 109), email address: uginfo@chem.ucalgary.ca, or at .
|
Chemistry
515
|
Advanced Instrumental Analysis
|
|
Lectures: Fundamental aspects of modern instrumental methods. Spectroscopic methods: UV-visible and atomic absorption spectroscopy, flame and plasma emission methods. Chromatographic methods; liquid and gas chromatography. Mass spectroscopy. Laboratory: Analysis of inorganic and organic samples using spectroscopic, electrochemical, and chromatographic instrumental methods.
Course Hours:
H(3-4)
Prerequisite(s):
Chemistry 311 and 315.
|
back to top | |
|
Chemistry
521
|
Introduction to Atmospheric Chemistry
|
|
An introduction to tropospheric and stratospheric chemistry. The detailed chemistry of the stratosphere and troposphere; gas-phase chemical kinetics; photochemistry and atmospheric radiation; aerosols; anthropogenic pollution and air quality; climate forcing; introduction to modeling and atmospheric transport.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 315 and 373.
Notes:
Chemistry 471 is recommended as a prerequisite.
|
back to top | |
|
Chemistry
531
|
Advanced Inorganic Chemistry I
|
|
Coordination and organometallic chemistry of the transition elements, incorporating the lanthanoids and actinoids. Fundamental and applied aspects, including characterization techniques, reaction mechanisms, catalysis and bioinorganic chemistry.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 333 and one of 353 or 355.
|
back to top | |
|
Chemistry
533
|
Advanced Inorganic Chemistry II
|
|
Chemistry of the s- and p-block elements. Interpretation of nuclear magnetic resonance, electron paramagnetic resonance, vibrational and mass spectra. Fundamental concepts and industrial uses of inorganic heterocycles and polymers, electron-deficient and organometallic compounds. Solid-state chemistry.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 333 and one of 353 or 355.
|
back to top | |
|
Chemistry
535
|
Advanced Inorganic Laboratory
|
|
Advanced laboratory techniques for the synthesis and characterization of main group compounds, organometallics and solid-state materials using modern spectroscopic and structural methods. Includes a short project.
Course Hours:
H(1-8)
Prerequisite(s):
Chemistry 333 and 453.
Notes:
Open to students in Chemistry programs and to others by consent of the Department.
|
back to top | |
|
Chemistry
551
|
Organic Synthesis
|
|
Concepts and strategies of synthesizing molecules with emphasis on carbon-carbon bond-forming reactions, protecting groups, chemo-, regio- and stereoselectivity.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 453.
|
back to top | |
|
Chemistry
553
|
Bio-organic Chemistry
|
|
Organic chemistry applied to the understanding of biomolecules: selected topics from carbohydrate, peptide/protein, lipid and nucleoside chemistry, enzyme inhibition and drug design.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 453.
|
back to top | |
|
Chemistry
555
|
Advanced Organic Laboratory
|
|
Advanced laboratory techniques: methods of purification and identification of products, purification of reagents, experimental design, working with air/moisture sensitive reagents. Includes a short research project.
Course Hours:
H(1-8)
Prerequisite(s):
Chemistry 453.
Antirequisite(s):
Credit for both Chemistry 555 and 455 will not be allowed.
Notes:
Open to students in Chemistry programs and to others by consent of the Department.
|
back to top | |
|
Chemistry
559
|
Organic Spectroscopy
|
|
The instrumentation, theory and practical aspects of spectroscopy (e.g. UV/vis, MS, IR, 1H and 13C NMR including 2D-techniques). The emphasis will be on the application for structural elucidation through a problem solving approach.
Course Hours:
H(3-1T)
Prerequisite(s):
Chemistry 351 and one of 353 or 355.
|
back to top | |
|
Chemistry
571
|
Physical Chemistry of Interfaces
|
|
The chemical and electrical nature, as well as basic thermodynamics, of interfaces. Surface films and aqueous interfaces, including micelles and bilayers. Interfaces involving solids such as metals and semiconductors. Absorption phenomena and surface catalysis. Survey of experimental approaches for interfacial studies.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 371 and 373.
|
back to top | |
|
Chemistry
573
|
Nature of the Condensed Phase in Chemistry
|
|
Theoretical models of liquids and solids. Dielectric continuum, polarizabilities and magnetism. Ionic crystal, insulators, conductors, semiconductors and super conductors. Some aspects of scattering techniques for structure determination.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 371 and 373.
|
back to top | |
|
Chemistry
575
|
Advanced Electronic Structure Theory
|
|
A discussion of the theories of modern electronic structure illustrated by applications to molecular structure and bonding, electronic spectroscopy, as well as chemical reactivity and dynamics.
Course Hours:
H(3-1T-3)
Prerequisite(s):
Chemistry 371 and 373.
|
back to top | |
|
Chemistry
579
|
Surface and Colloid Chemistry for Engineers
|
|
Introduces the fundamental and applied aspects of interfacial phenomena including capillarity, surface and interfacial tension, films, wetting and contact angles, adsorption, micellization, solubilization and emulsification. Examples drawn from colloids, foams, aerosols and macromolecules.
Course Hours:
H(3-0)
Prerequisite(s):
Chemistry 209, 357 and Chemical Engineering 427.
|
back to top | |
|
Chemistry
599
|
Selected Topics in Chemistry
|
|
Selected topics are offered based on the interests of Chemistry faculty and students.
Course Hours:
H(3-0)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Graduate Courses
Advanced graduate level courses are listed below. Courses in certain areas are grouped under "Selected Topics" titles. The content and offering of these are decided annually by the Department to meet the requirements of graduate students in the program. A student may receive credit for several courses in a given selected topics area. Details of offerings and course outlines may be obtained from the Department on request.
Unless stated otherwise the prerequisite for entry to all courses at the 600 level and above is "consent of the Department." Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.
|
Chemistry
601
|
Research Seminar
|
|
Reports on studies of the literature or of current research. Required of all graduate students in Chemistry.
Course Hours:
H(2S-0)
NOT INCLUDED IN GPA
|
back to top | |
|
|
Chemistry
613
|
Electrochemical Fundamentals and Methodologies
|
|
Origin, significance, and thermodynamics of interfacial potential differences; structure of the double layer; basic principles of electron transfer at interfaces, Butler-Volmer equation; mass transport control of electro-chemical reactions; controlled potential methods as applied to electrode surface reactions and homogeneous reactions coupled to electron-transfer processes.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
615
|
Analytical Separations
|
|
Theory and practice of resolving mixtures into separate components for analysis. Basic theory; liquid-liquid extraction; high performance liquid chromatography; gas-liquid, open bed, ion exchange and exclusion chromatography; electrophoresis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
617
|
Advanced Analytical Chemistry
|
|
Consideration of principles and equilibria pertaining to aqueous and nonaqueous neutralization, redox, complexation, precipitation and potentiometric methods employed in analyses. Statistical considerations of analytical data and analysis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
619
|
Selected Topics in Analytical Chemistry
|
|
Topics of current interest such as: properties of synthetic polymer membranes, advanced instrumental methods, developments in chemical sensors, speciation studies, environmental analytical chemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
621
|
Organometallic Chemistry
|
|
A detailed discussion of structure, bonding and preparative methods in organometallic chemistry including the industrial and synthetic applications of organometallic compounds.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
623
|
Chemistry of the Main Group Elements
|
|
The chemistry of electron-deficient, electron-precise, and electron-rich rings, inorganic polymers, and organometallic compounds of the main group elements; applications of spectroscopic techniques; industrial uses. Seminars on recent research developments.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
627
|
Theoretical Inorganic Chemistry
|
|
Aspects of theoretical inorganic and organometallic chemistry including: quantitative and qualitative molecular orbital theory; the bonding and structure of molecules, clusters, and extended arrays; the fragments of organometallic species; orbital correlation diagrams in inorganic reactions; spectroscopic methods and their interpretation.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
629
|
Selected Topics in Inorganic Chemistry
|
|
Courses are offered to cover topics of current interest, such as bioinorganic chemistry, inorganic solution phenomena, and the inorganic chemistry of the solid state.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
651
|
Advanced Organic Stereochemistry
|
|
Stereochemical principles in organic chemistry, including: geometry, bonding, symmetry, molecular isomerism, conformational analysis, asymmetric and stereocontrolled reactions.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
653
|
Advanced Organic Spectroscopy
|
|
Advanced spectroscopic techniques for the determination of organic molecular structure. Techniques include Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared and Raman Spectroscopy, Ultraviolet and Visible Spectroscopy; (absorption, fluorescence, chiroptic), Mass Spectrometry, and an outline of the single-crystal X-ray diffraction method. Separation techniques will be covered, particularly those combining separations and spectroscopic analysis.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
655
|
Advanced Organic Synthesis
|
|
A review of modern synthetic reactions and methods in the field of organic chemistry with emphasis on the recent literature.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
657
|
Theoretical Organic Chemistry
|
|
Theoretical principles of organic chemistry including stereochemistry, molecular orbital calculations, pericyclic processes (Woodward-Hoffmann rules), and PMO theory.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
659
|
Selected Topics in Organic Chemistry
|
|
Courses are offered in major branches of organic chemistry, including: carbohydrate chemistry, steroids and terpenoids, semiochemistry, heterocyclic chemistry, biosynthesis of secondary metabolites, as well as other topics of current interest.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
669
|
Selected Topics in Applied Chemistry
|
|
Courses are offered in such topics as electrochemistry, industrial catalysis, chemistry of energy sources, colloid and surface chemistry and polymer chemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
681
|
Crystallography
|
|
A general introduction to X-ray analysis of single crystals. Topics include: Geometry of the crystalline state; diffraction of X-rays; Fourier synthesis; methods of structure solution; accuracy and precision of derived parameters.
Course Hours:
H(3-0)
|
back to top | |
|
Chemistry
689
|
Selected Topics in Physical Chemistry
|
|
Courses are offered in such topics as dielectric properties, kinetics, molecular vibrations, fluorescence spectroscopy, X-ray diffraction.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Chemistry
701
|
Independent Study
|
|
Independent study outside a student's thesis area under the direction of a staff member and approved by the student's supervisor (or in the case of PhD students the supervisory committee) and Department Head. A report must be submitted on completion of the course.
|
back to top | |
|