Áù¾ÅÉ«ÌÃ

UofC

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Faculty of Graduate Studies General Information
Graduate Students' Association (GSA)
Academic Schedule
Faculty of Graduate Studies Degrees Information
Admissions
Awards and Financial Assistance for Graduate Students
Fees and Expenses
Academic Regulations
Program Descriptions
Interdisciplinary Specializations
Courses of Instruction
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
C
D
E
Ecology ECOL
Economics ECON
Educational Psychology EDPS
Educational Research EDER
Electrical Engineering ENEL
Energy and Environmental Systems EESS
English ENGL
Entrepreneurship and Innovation ENTI
Environmental Design EVDS
Environmental Design Architecture EVDA
Environmental Design Planning EVDP
Environmental Engineering ENEN
F
G
H
I
J, K
L
M
N, O
P
R
S
T
U
V
Z
Student Services
About the Áù¾ÅÉ«ÌÃ
Graduate Studies Calendar 2015-2016 Courses of Instruction Course Descriptions E Electrical Engineering ENEL
Electrical Engineering ENEL

Instruction offered by members of the Department of Electrical and Computer Engineering in the Schulich School of Engineering.

Department Head - D. Westwick

Associate Heads – M. Potter (Undergraduate), A. Fapojuwo (Graduate)

Director of Undergraduate Program for Electrical and Computer Engineering – N. Bartley

Director of Undergraduate Program for Software Engineering – D. Krishnamurthy

Graduate Courses

Registration in all courses requires the approval of the Department of Electrical and Computer Engineering.

Electrical Engineering 601       Power System Operation
Energy transfer in power systems; real and reactive power flows; VAR compensation. Power system control, interconnected operation. Power system stability, techniques of numerical integration. Load representation, power quality. Computational paradigms for typical power system problems. Computer simulation of representative power system problems.
Course Hours:
3 units; H(3-1.5)
back to top
Electrical Engineering 602       Virtual Environments and Applications
Introduction to virtual reality (VR) technologies; Characterization of virtual environments; hardware and software; user interfaces; 3D interaction; research trends. Applications: medicine, manufacturing, oil and gas reservoirs, the arts, and education.
Course Hours:
3 units; H(3-1)
Prerequisite(s):
Software Engineering for Engineers 409 or equivalent.
Also known as:
(formerly Software Engineering for Engineers 619.71)
back to top
Electrical Engineering 603       Rotating Machines
General theory of rotating machines providing a unified approach to the analysis of machine performance. General equations of induced voltage and torque. Transient performance of machines.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 604       System Design of Wireless Transceivers
Linear and nonlinear system analysis. Radio architectures – super-heterodyne, low intermediate frequency, direct conversion, sub-sampling; receiver system analysis and design; transmitter system analysis and design. Applications of transceiver system design to satellite and wireless communications.
Course Hours:
3 units; H(3-1)
Prerequisite(s):
Electrical Engineering 327 and 471 or equivalents.
Antirequisite(s):
Credit for both Electrical Engineering 604 and 619.38 will not be allowed.
back to top
Electrical Engineering 605       Professional Development I
Introduction to health and safety. Communication styles, supervisory relationships, and respect in the lab. Presentation planning and voice projection. Introduction to reference gathering and management. Awareness of plagiarism and academic integrity. Introduction to writing of technical abstracts. This course is compulsory for all full-time graduate students.
Course Hours:
1.5 units; Q(1.5-0)
NOT INCLUDED IN GPA
back to top
Electrical Engineering 607       Professional Development II
Development of presentation skills. Writing and publishing scientific manuscripts. Introduction to peer review process, thesis defence and candidacy. Introduction to engineering design. Post-graduation career development including intellectual property, membership in professional organizations, and networking basics. This course is compulsory for all full-time graduate students.
Course Hours:
1.5 units; Q(1.5-0)
NOT INCLUDED IN GPA
back to top
Electrical Engineering 609       Special Topics
Designed to provide graduate students, especially at the PhD level, with the opportunity of pursuing advanced studies in particular areas under the direction of a faculty member.
Course Hours:
1.5 units; Q(3-1)
MAY BE REPEATED FOR CREDIT
back to top
Electrical Engineering 611       Digital Systems
Introduction to digital system design for mask programmable and field programmable gate arrays. CMOS digital logic design. Flip-flop timing and metastability. Design for testability. CAD tools for digital systems design.
Course Hours:
3 units; H(3-1)
back to top
Electrical Engineering 613       RF Power Amplifiers and Transmitters
This is an advanced level graduate course, dealing with the theory, design and optimization of RF power amplification systems for wireless and satellite communication applications. The course provides a details treatment of linear and non-linear characterization and modelling of amplifiers/transmitters from device to system level perspective. Theory of operation as well as design techniques of linear amplifiers (class A, AB, B, C), switching mode amplifiers (class E, D and F) and balanced amplifiers are presented. Linearization and power efficiency enhancements techniques of power amplifiers/transmitters are also covered.
Course Hours:
3 units; H(3-1)
Prerequisite(s):
Electrical Engineering 574 or equivalent, or consent of the instructor.
Antirequisite(s):
Credit for both Electrical Engineering 613 and 619.22 will not be allowed.
back to top
Electrical Engineering 615       Non-linear Control
Non-linear systems; phase portraits, equilibrium points, and existence of solutions. Lyapunov stability definitions and theorems. Non-linear control design; feedback linearization, sliding modes, adaptive control, backstepping, and approximate-adaptive control. Frequency domain stability analysis using describing functions.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.16)
back to top
Electrical Engineering 617              RF Integrated Circuit Design
Introduction to complementary metal oxide semiconductor (CMOS) wireless communication circuits; computer-aided design; impedance matching concepts; passive circuit elements in monolithic circuits; radio frequency integrated circuit building blocks.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Electrical Engineering 567 or 647.    
Antirequisite(s):
Credit for both Electrical Engineering 617 and 619.31 will not be allowed.    
back to top
Electrical Engineering 619       Special Problems
Designed to provide graduate students, especially at the PhD level, with the opportunity of pursuing advanced studies in particular areas under the direction of a faculty member.
Course Hours:
3 units; H(3-1)
MAY BE REPEATED FOR CREDIT
back to top
Electrical Engineering 623       Biomedical Systems and Applications

Introduction to biomedical systems. The four elements of a biomedical monitoring system. Biomedical system modelling. Biomedical sensors: basic concepts. Biomedical amplifiers and signal conditioning circuits. Noise, noise sources and non-idealities. Repeatability of measurements. Power supplies for biomedical monitoring systems. Frequency conditioning. Isolation amplifiers and patient safety. Analog-to-Digital conversion and anti-aliasing requirements. Multichannel biomedical data acquisition. Real-time requirements. Real-time digital conditioning of biomedical signals. The concept of closed-loop real-time control.


Course Hours:
3 units; H(3-1)
Prerequisite(s):
Consent of the Department.
back to top
Electrical Engineering 625       Estimation Theory
Estimation theory as applied in communication systems, signal processing, measurement systems, geophysical systems, biomedical engineering and geomatics engineering. Estimators covered include: MVU, BLUE, LS, ML, Bayesian and MMSE. Concepts covered include: CRLB, Neyman-Fisher and Sufficient Statistics.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 627       Antennas
Foundations of theory and practice of modern antennas. Topics covered will include: theoretical background, antenna parameters, simple radiators, antenna array theory, wire antennas, broadband antennas, microstrip antennas, aperture radiators, base station antennas, antennas for mobile communications, antenna measurements.
Course Hours:
3 units; H(3-0)
Notes:
Students registering in this course should have a background in electromagnetics and basic microwave engineering.
back to top
Electrical Engineering 629       Advanced Logic Design of Electronic and Nanoelectronic Devices
Two-level and multi-level logic synthesis; flexibility in logic design; multiple-valued logic for advanced technology; multi-level minimization; Binary Decision Diagrams, Word-level Decision Diagrams, sequential and combinational equivalence checking; technology mapping; technology-based transformations; logic synthesis for low power, optimizations of synchronous and asynchronous circuits, logical and physical design from a flow perspective; challenges of design of nanoelectronic devices.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 631       System Identification and Parameter Estimation
Parametric models of linear time-invariant systems. System and noise models. Estimation of model parameters. Structure and order selection. Model validation. Convergence and sensitivity analysis. Experiment design. MIMO systems. Subspace methods. Introduction to non-linear and/or time-varying systems.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Electrical Engineering 649.
back to top
Electrical Engineering 633       Wireless Networks
Wireless networks’ architectures and standards. Wireless communication protocols including network access control protocols, routing, congestion and flow control protocols, mobility and resource management protocols. Modelling and analysis of wireless network performance. Current and future research challenges in wireless networks.
Course Hours:
3 units; H(3-0)
Notes:
A senior undergraduate course in wireless communications is suggested as preparation for this course.    
back to top
Electrical Engineering 635       Cryptography and Number Theory with Applications
The topic of the course is to provide the students with vital information about the use of number theory in designing and implementing various public key cryptographic schemes.  We will stress on the efficacy of the algorithms used and their application in areas outside cryptography and coding theory.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for Electrical Engineering 635 and 619.87 will not be allowed.   
back to top
Electrical Engineering 637       Arithmetic Techniques with DSP Applications
The course is aimed at the use of specific computer arithmetic techniques for efficient design of DSP algorithms. We will provide comprehensive information form the theory of computer arithmetic. We will show how the performance of different algorithms can be optimized by using efficient arithmetic techniques. Many examples will be provided.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for both Electrical Engineering 637 and 619.88 will not be allowed.   
back to top
Electrical Engineering 639       Radio Frequency and Microwave Circuit Design
Circuit design via transmission line elements: special emphasis on microstrip circuits and effects of discontinuities (corners, Tees, and impedance steps). Analysis of passive impedance matching and filtering circuits using distributed and lumped elements. Narrow band matching and wide band matching techniques as well as wide band matching to a complex load. One and two port small signal amplifiers. Scattering parameter design methods: amplifier gain, input and output matching and stability. Computer aided design methods and broadband design methods. Large signal transistor amplifiers: device non-linearities and design methodologies.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 641       Optimization for Engineers
Introduction to optimization techniques for solving engineering problems.  Modelling engineering problems as optimization problems.  Recognizing and solving convex sets, functions and optimization problems.  Numerical linear algebra including: matrix structures, algorithm complexity, LU factorization.  Unconstrained optimization methodology and engineering applications.  Constrained optimization techniques and engineering applications.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Engineering 407 or the consent of the instructor.
Antirequisite(s):
Credit for both Electrical Engineering 641 and 619.05 will not be allowed.
Also known as:
(formerly Electrical Engineering 619.05)
back to top
Electrical Engineering 643       Fibre Optics Transmission
Fundamental theory of cylindrical optical waveguides by way of Maxwell's equation and the modal analysis of the slab waveguides, step-index and graded-index fibres, review of fibre chemistry and production techniques. Problem areas relating to measurement of fibre parameters. Optical transmitters, photodetectors and receivers, modulation and multiplexing techniques, splices and connectors. Multiterminal analog and digital system analysis and design. Optical switching and amplification, integrated optics.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 645       Data Mining and Knowledge Discovery
Types of data mining: classification, clustering, association, prediction. Processes: data preparation, model building. Techniques: decision tree, neural network, evolutionary computing, Bayesian network. Applications: multi-media, text and web mining.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.51)
back to top
Electrical Engineering 647       Analog Integrated Circuit Design
Review of static and dynamic models of bipolar and field effect transistors. Basics of analog integrated circuit design. Computer-aided modelling. Fabrication processes and their influence on analog design. Operational voltage amplifier and transconductance amplifier design techniques. Case studies of bipolar and complementary metal oxide semiconductor (CMOS) designs. CMOS analog integrated circuit design project.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 649       Random Variables and Stochastic Processes
Axiomatic view of probability; continuous and discrete random variables; expectation; functions of random variables; conditional distributions and expectations; stochastic processes; stationarity and ergodicity; correlation and power spectrum; renewal processes and Markov chains; Markov and non-Markovian processes in continuous time.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.22)
back to top
Electrical Engineering 651       Resource Management for Wireless Networks
Qualitative and mathematical formulation of the resource management problem in wireless networks; elements of radio resource management: power and Walsh code allocation and control. Call admission control, traffic load control, packet scheduling; radio resource management algorithms: fixed resource allocation, handover resource management, transmitter power management, dynamic resource allocation, and packet scheduling algorithms; quality-of-service (QoS) and resource management; joint radio resource management problem across heterogeneous wireless networks; applications and case studies: resource management in third generation (3G) and beyond 3G wireless Internet Protocol (IP) networks; open research challenges in resource management for wireless networks.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.04)
back to top
Electrical Engineering 653       Theory and Practice Advanced DSP Processor Architecture
Architecture and capabilities of SISD, SIMD and VLIW processors; Developing high speed algorithms: code timing, reliability, background DMA activity, maintainability; Developing a personal software process appropriate for embedded systems.
Course Hours:
3 units; H(3-1T-3/2)
Also known as:
(formerly Electrical Engineering 619.23)
back to top
Electrical Engineering 655       Discrete Time Signal Processing
Foundations of discrete time signal processing of deterministic and stochasitic signals. Transform analysis: Laplace, Fourier, discrete time Fourier, Z transform, DFT/FFT and Hilbert. Time sampled signals, mixed digital/analog LTI system design and analysis with practical DSP implementations. Fundamentals of FIR/IIR/multirate DSP filter implementation and analysis. Application of DSP in communications receiver, audio, image and video processing.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 657       Detection of Signals in Noise
Detection of distorted and noise corrupted deterministic and random signals. Application to optimum statistical signal processing algorithms in data communications, GPS, radar, synchronization and image processing.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
At least one of Electrical Engineering 675, 649, or 625 or consent of the instructor.
Also known as:
(formerly Electrical Engineering 619.73)
back to top
Electrical Engineering 659       Active-RC and Switched-Capacitor Filter Design
The filter design problem; operational amplifier characteristics; cascade methods of RC-active filter design; filter design with the active biquad; active filter design based on a lossless ladder prototype. Switched-capacitor (SC) integrators; design of cascade, ladder, and multiple feedback SC filters; non-ideal effects in SC filters; scaling of SC filters; topics in fabrication of SC filters.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 661       Grid-Connected Inverters for Alternative Energy Systems
Analysis and design of grid-connected inverters fed by an alternative energy source. Switch mode converters, inverter topologies, harmonics, drive electronics, control methodologies, implementation techniques, course project.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.18)
back to top
Electrical Engineering 663       Numerical Electromagnetic Field Computation
Solution techniques for electromagnetic fields: finite difference, finite elements/volumes, boundary elements, finite difference time domain, and moment methods. Practical aspects concerning computer implementation: accuracy, speed, memory, and solvers.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.09)
back to top
Electrical Engineering 665       Bioelectromagnetism
Generation, transmission, and measurement of electromagnetic events generated by excitable cells (heart, brain, muscle). Topics cover the scale from membrane and cell dynamics to tissue behaviour and body surface recordings.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.21)
back to top
Electrical Engineering 667       Intelligent Control
Application of machine learning algorithms in control systems: neural networks, fuzzy logic, the cerebellar model arithmetic computer, genetic algorithms; stability of learning algorithms in closed-loop non-linear control applications.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
At least one undergraduate-level course in control systems.
Also known as:
(formerly Electrical Engineering 619.25)
back to top
Electrical Engineering 669       Renewable Energy and Solid State Lighting for the Developing World
History of Lighting, Illumination Measurements & Standards - Incandescent, Fluorescent, LEDs & OLEDs. Generation using Hydro, Solar, Photovoltaic, Wind, Thermoelectric, Biomass, Thermal. Energy Storage & Supply Chains. System Design, Analysis & Life Cycle Assessment. Kyoto Protocol, Carbon Credits and Trading.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.52)
back to top
Electrical Engineering 671       Adaptive Signal Processing
Fundamentals: Performance objectives, optimal filtering and estimation, the Wiener solution, orthogonality principle. Adaptation algorithms: MSE performance surface, gradient search methods, the Widrow-Hoff LMS algorithm, convergence speed and misadjustment. Advanced techniques: recursive least-squares algorithms, gradient and least-squares multiple filter, frequency domain algorithms, adaptive pole-zero filters. Applications: system identification, channel equalization, echo cancellation, linear prediction, noise cancellation, speech.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 673       Wireless Communications Engineering
The basics of mobile radio telephone: mobile telephone frequency channels, components of mobile radio, objectives of mobile telephone systems, major problems and tools available. The mobile radio environment: fading and propagation loss, propagation loss prediction, channel and signal models, fading statistics, classification of fading channels. Methods of reducing fading effects: diversity techniques and diversity combining methods. Signaling over fading channels. Frequency reuse schemes: cellular concept, mobile radio interference, FDMA, TDMA, and spread spectrum techniques. Portable systems, air-to-ground systems, and land mobile/satellite systems, processing.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Electrical Engineering 571 or equivalent.
back to top
Electrical Engineering 675       Digital Communications
Physical layer digital communications. Linear modulation and demodulation using signal space concepts. Optimal and sub-optimal detection of symbols and sequences. Pulse shaping and spectral analysis. Wireless propagation and system design. Error connection using channel codes. Advanced techniques for high speed communications.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Electrical Engineering 571 or equivalent.     
back to top
Electrical Engineering 677       Information Theory Applied to Digital Communications
Understanding of the digital communication link in a noisy channel with distortion. Fundamentals of information theory applicable to the statistical signal processing of digital communication receivers, presented in depth that will provide insights into optimum receiver architecture, processing and error coding. Capacity analysis of SISO and MIMO multiple antenna communication systems as well as other forms of diversity, derived within the framework of information theory.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
Electrical Engineering 675 or equivalent.
back to top
Electrical Engineering 679       Digital Video Processing
Fundamentals of digital video representation, filtering and compression, including popular algorithms for 2-D and 3-D motion estimation, object tracking, frame rate conversion, deinterlacing, image enhancement, and the emerging international standards for image and video compression, with such applications as digital TV, web-based multimedia, videoconferencing, videophone and mobile image communications.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
At least one undergraduate-level course in Signal Processing.
Also known as:
(formerly Electrical Engineering 619.60)
back to top
Electrical Engineering 681       VLSI and SOC
Timing and power models; Issues in BIST for SOC; System and Circuit Optimization for SOC applications using compiler techniques; System-on-a-chip design methodology; Topics in Architectural low-power techniques; Design methodology for embedded architectures; Advanced architectures for image/video/speech/audio/Internet/wireless applications; Topics in algorithm/architecture design under timing and throughput constraints.
Course Hours:
3 units; H(3-0)
Prerequisite(s):
At least one undergraduate-level course in Microelectronics or VLSI.
Also known as:
(formerly Electrical Engineering 619.76 and 619.82)
back to top
Electrical Engineering 683       Algorithms for VLSI Physical Design Automation
Aspects of physical design including: VLSI design cycle, fabrication processes for VLSI devices, basic data structures and algorithms, partitioning, floor planning, placement and routing.
Course Hours:
3 units; H(3-0)
Also known as:
(formerly Electrical Engineering 619.19)
back to top
Electrical Engineering 685       Software Defined Radio Systems
Advanced design aspects related to the design of Software Defined Radio (SDR) Systems applicable to wireless and satellite communication systems. System level modelling and baseband design aspects of SDR system. Transmitter and receiver architectures appropriate for SDR transceivers. Multi-band transmitters, sub-sampling receivers and six-port based receivers.  Design strategies and calibration techniques for SDR systems.
Course Hours:
3 units; H(3-1)
Prerequisite(s):
Engineering 574 or equivalent, or the consent of the Instructor
Antirequisite(s):
Credit for both Electrical Engineering 641 and 619.64 will not be allowed.
Also known as:
formerly Electrical Engineering 619.64
back to top
Electrical Engineering 687       Switch Mode Power Converters
Design and analysis of dc-to-dc and ac-to-ac single-phase power converters. Device characteristics. Dc-to-dc topologies, dc-to-ac topologies and ac-to-ac topologies. Linearized models. Classical feedback control; introduction to state-space analysis methods. Input harmonic analysis, output harmonic analysis, and techniques to obtain unity input power factory.
Course Hours:
3 units; H(3-0)
back to top
Electrical Engineering 691       Integrated Micro and Nanotechnology Sensory Systems

Integrated circuits for sensing. The physical process of sensing photons and ions. The circuitry of signal amplification. Considerations for integrated circuit implementation. Solid state sensors and development in CMOS technology. Analog to Digital conversion in sensory arrays. Technology scaling and impact. Low voltage and implications regarding signal processing. Other types of sensors such as pH sensing. MEMS technology and applications. Integrated Light sources. System examples.


Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for both Electrical Engineering 691 and 619.26 will not be allowed.
back to top
Electrical Engineering 693       Restructured Electricity Markets
Market design and auction mechanisms, role of independent system operator (ISO) in different markets, generation scheduling in deregulation, transmission operation and pricing.  Transmission rights, procurement and pricing ancillary services, system security in deregulation, and resource management in a market environment.
Course Hours:
3 units; H(3-0)
Antirequisite(s):
Credit for both Electrical Engineering 693 and 619.98 will not be allowed.
back to top
Electrical Engineering 695       Applied Mathematics for Electrical Engineers
Understanding of vector spaces and function spaces; eigenvalues and eigenvectors in both the linear algebraic and differential equation sense; special functions in mathematics; advanced methods for solutions of differential equations.
Course Hours:
3 units; H(3-1T)
Prerequisite(s):
Electrical Engineering 327 or equivalent.
Antirequisite(s):
Credit for both Electrical Engineering 695 and either of 519.42 or 619.95 will not be allowed.
back to top
Electrical Engineering 697       Digital Image Processing
Image formation and visual perceptual processing. Digital image representation. Two dimensional Fourier transform analysis. Image enhancement and restoration. Selected topics from: image reconstruction from projections; image segmentation and analysis; image coding for data compression and transmission; introduction to image understanding and computer vision. Case studies from current applications and research.
Course Hours:
3 units; H(3-2)
Prerequisite(s):
Electrical Engineering 327 or equivalent.
back to top
Electrical Engineering 698       Graduate Project
Individual project in the student's area of specialization under the guidance of the student's supervisor.
Course Hours:
6 units; F(0-4)
Notes:
Open only to students in the MEng Courses Only Route.
back to top
Electrical Engineering 699       Multidimensional Signal Processing
Characterization of multidimensional (MD) signals, the MD Laplace, Fourier and Z transforms. Practical analog and digital signals and their MD energy density spectra. Aliasing, convolution, boundary conditions, causality, and stability in MD. Characterization of linear shift-invariant systems using MD transform transfer functions. State variable representations of MD systems. Elementary decompositions of MD transfer functions and bounded-input bounded-output stability. Design and implementation of MD digital filters. Applications of MD signal processing in engineering systems. Two- and three-dimensional digital signal processing in seismic, sonar, imaging and broadcast television.
Course Hours:
3 units; H(3-0)
back to top