Áù¾ÅÉ«ÌÃ


Site Navigation
Welcome
Important Notice and Disclaimer
Academic Schedule
Types of Credentials and Sub-Degree Nomenclature
Undergraduate Degrees with a Major
Combined Degrees
Minor Programs
Student and Campus Services
Admissions
Academic Regulations
Experiential Learning
Tuition and General Fees
Student Financial Support
Architecture, Planning and Landscape, School of
Faculty of Arts
Cumming School of Medicine
Faculty of Graduate Studies
Haskayne School of Business
Faculty of Kinesiology
Faculty of Law
Faculty of Nursing
Qatar Faculty
Schulich School of Engineering
Faculty of Science
Faculty of Social Work
Faculty of Veterinary Medicine
Werklund School of Education
Embedded Certificates
Continuing Education
COURSES OF INSTRUCTION
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
Biochemistry BCEM
Biology BIOL
Biomedical Engineering BMEN
Biostatistics BIST
Botany BOTA
Business Intelligence and Management Analytics BIMA
Business Technology Management BTMA
C
D
E
F
G
H
I
J, K
L
M
N, O
P
Q
R
S
T, U
V, W, Z
About the Áù¾ÅÉ«ÌÃ
Glossary of Terms
Archives
Contact Us
Áù¾ÅÉ«Ìà Calendar 2023-2024 COURSES OF INSTRUCTION Course Descriptions B Biochemistry BCEM
Biochemistry BCEM

For information about these courses contact the Department of Biological Sciences: .

Senior Courses
Biochemistry 341       Biochemistry of Life Processes
Emphasis is placed on describing the chemistry of biochemical molecules including proteins, carbohydrates, lipids, and nucleic acids. Cell structure and life processes are introduced by examining the chemistry of the biomolecules involved. Basic concepts of metabolism are introduced, focusing on the breakdown of carbohydrates for energy. The laboratory component reinforces learning of the lecture material, while teaching technical skills and the analysis and interpretation of experiments involving biochemical molecules.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
Chemistry 351.
Antirequisite(s):
Not open to majors in the Department of Biological Sciences or Natural Sciences concentrators in Biological Sciences. Credit for Biochemistry 341 and 393 will not be allowed.
back to top
Biochemistry 393       Introduction to Biochemistry
Emphasis is placed on analyzing the chemistry of biochemical molecules including proteins, carbohydrates, lipids, and nucleic acids. The chemistry of biomolecules is applied to prerequisite knowledge of cell structures and life processes. Basic concepts of metabolism are introduced, focusing on the breakdown of carbohydrates for energy. The laboratory component reinforces learning of the lecture material, while teaching technical skills and the analysis and interpretation of experiments involving biochemical molecules.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
Chemistry 351, Biology 311 and admission to a Major offered by the Department of Biological Sciences or the Neuroscience Major or a primary concentration in Biological Sciences in either the Natural Sciences or Environmental Science Major. Or, Chemistry 351, and Medical Science 341, and admission to either the Biomedical Science or Bioinformatics Major.
Antirequisite(s):
Credit for Biochemistry 393 and 341 will not be allowed.
back to top
Biochemistry 411       Laboratory Techniques I
Practical experience in the laboratory with protein purification and protein characterization techniques. Topics may include bioinformatics, sample sources, classic and affinity tag chromatography, electrophoresis, enzyme assays, antibodies and methods to study protein: protein interactions.
Course Hours:
3 units; (3-6)
Prerequisite(s):
Biochemistry 393; and Chemistry 353 or 355.
Antirequisite(s):
Credit for Biochemistry 411 and either of Biochemistry 401 or 403 will not be allowed.
back to top
Biochemistry 413       Laboratory Techniques II
Practical experience in the laboratory with recombinant DNA techniques, protein production, mutagenesis and characterization. Topics may include bioinformatics, DNA amplification and gene cloning and expression strategies, biophysical characterization, stressing the properties of nucleic acids and proteins relevant to these techniques.
Course Hours:
3 units; (3-6)
Prerequisite(s):
Cellular, Molecular and Microbial Biology 411, Biochemistry 411 and 471.
Antirequisite(s):
Credit for Biochemistry 413 and any of Biochemistry 401, 403 or Cellular, Molecular and Microbial Biology 451 will not be allowed.
back to top
Biochemistry 431       Proteins and Proteomics
Protein structure and chemistry: structural motifs, ligand-binding, conformational changes, chemical modification; protein folding; structure prediction by molecular modelling. Identification of proteins in the proteome: 2D gel electrophoresis and chromatography, mass spectrometry; metalloproteins; post-translational modifications; protein-protein interactions.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biology 331; Biochemistry 341 or 393; and Chemistry 353 or 355.
Antirequisite(s):
Credit for Biochemistry 431 and 531 will not be allowed.
back to top
Biochemistry 443       Metabolism
Intermediary carbohydrate, lipid, amino acid and nucleotide metabolism, and the regulation of these metabolic pathways.
Course Hours:
3 units; (3-2/2T)
Prerequisite(s):
Chemistry 353 or 355; and Biochemistry 341 or 393.
back to top
Biochemistry 471       Physical Biochemistry
The laws of thermodynamics as they apply to biological systems: the hydrophobic effect, properties of water, electrolyte solutions and ligand binding. Optical spectroscopic methods including UV/visible absorption, fluorescence, and infrared as applied to biological molecules.
Course Hours:
3 units; (3-2T)
Prerequisite(s):
Biochemistry 341 or 393; and Chemistry 353 or 355; and 3 units from Mathematics 249, 251, 265, 275, 281, or Applied Mathematics 217; and 3 units from Mathematics 253, 267, 277, 283, 211, 213, or Applied Mathematics 219; and Physics 211 or 221, and 223.
back to top
Biochemistry 507       Directed Research in Biochemistry

Directed training in field/laboratory methods and research.

507.01 Directed Research in Biochemistry I

507.02 Directed Research in Biochemistry II


Course Hours:
3 units; (0-8)
Prerequisite(s):
54 units and consent of the Department.
back to top
Biochemistry 528       Research Project in Biochemistry
Research project under the co/supervision of faculty members in the Department of Biological Sciences. Original and independent thought, practical research, and written and oral reports presented on completion of this course.
Course Hours:
6 units; (0-8)
Prerequisite(s):
72 units and consent of the Department.
back to top
Biochemistry 530       Honours Research Project in Biochemistry
Research project under the co/supervision of faculty members in the Department of Biological Sciences. Original and independent thought, practical research, and written and oral reports presented on completion of this course. Open only to Honours Biochemistry students or Honours Biological Sciences students.
Course Hours:
6 units; (0-8)
Prerequisite(s):
72 units and consent of the Department.
back to top
Biochemistry   541       Concepts in Biochemical Toxicology
An interdisciplinary course focused on the diverse biomolecular mechanisms by which organic (e.g. PCB’s) and inorganic pollutants (e.g. Cd, Hg, As) adversely affect cell function examined at multiple levels of organization, from molecules to whole animals organisms. Topics include how natural toxins exert toxicity, how toxins/light generate free radicals within cells, how the speciation of metals in the environment affects their bioavailability/toxicity, and the toxicity mechanisms that lead to homeostatic dysfunction.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 341 or 393; Chemistry 311, 321 and 351.
Also known as:
(Chemistry 541)
back to top
Biochemistry 543       Enzymology
The structure, mechanisms and biological interactions of enzymes. Binding, catalysis, rates and regulation will be discussed with regard to chemical principles of kinetics and reaction. The principles of enzyme action will be considered in the context of the biological role that enzymes play.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 341 or 393.
back to top
Biochemistry 547       Signal Transduction and Regulation of Metabolism
Principles of signal transduction with examples from prokaryotes and eukaryotes. Discussion of protein covalent modifications, inositol lipid signaling, structure and function of protein kinases and protein phosphatases and their role in regulating various aspects of cell function. Emphasis on metabolic pathways, cell cycle control, checkpoints, DNA damage response and epigenetics.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 393.
back to top
Biochemistry 551       Structural Biology
Applications of modern methods to structural studies of proteins and nucleic acids by NMR and X-ray crystallography with a comparison of the structural information derived from the two methods. Crystallization of macromolecules. Experimental and theoretical foundations of X-ray and NMR structure determination, and ligand binding.

Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 341 or 393; and Biochemistry 471 or Chemistry 371.
back to top
Biochemistry 553       Molecular Biophysics
A comprehensive survey of modern biophysics covering the flow and processing of matter, energy and information in living systems. Equilibrium and non-equilibrium thermodynamics in biology. Molecular motors and facilitated proton transport. An integrative approach connecting atomistic theories to cellular processes.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 341 or 393; and Biochemistry 471 or Chemistry 371.
Antirequisite(s):
Credit for Biochemistry 553 and Biology 553 will not be allowed.
back to top
Biochemistry 555       Biomembranes
The material examines the structure and function of biological membranes with a strong emphasis on the role of membrane proteins. Topics may include: the physical properties of lipid bilayers, isolation and purification of membrane proteins, preparation of membrane mimetic systems, ion and solute movement across membranes (transport and ion channels), membrane protein folding, assembly and structure, and protein secretion and translocation systems.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 431 and 471.
back to top
Biochemistry 561       Applied Biochemistry and Biotechnology
An introduction to the language, materials, methods, concepts and commercial applications of biotechnology with emphasis on methodology, proteins as products, and the impact of genome sequencing on biotechnology. Topics will also include microbial, animal, and bioremediation biotechnology, expanding the genetic code, synthetic biology, antibiotic resistance, cancer immunotherapy, stem cells, and gene therapy.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Biochemistry 341 or 393; and Biology 331.
back to top
Biochemistry 575       Lipids
Structure and function of lipids including phospholipids, sphingolipids, and steroids. Topics include properties of lipids and bilayers, lipid-lipid and lipid-protein interactions, technological applications, biosynthesis and regulation, lipids as second messengers, intracellular trafficking, and lipids in physiology and disease. Literature review and student seminars are significant components of this course.
Course Hours:
3 units; (3-1T-0)
Prerequisite(s):
6 units of courses labelled Biochemistry.
back to top
Biochemistry 577       Biomolecular Simulation
Introduction to simulation and computer modelling methods commonly used in biochemistry and biophysics, with a focus on physical models to understand the behaviour of biomolecules. Topics include simulation methods, dynamics of proteins, DNA, and lipids, calculation of binding constants, protein-drug interactions, properties of ion channels as well as a number of recent literature topics.
Course Hours:
3 units; (3-4)
Prerequisite(s):
Biochemistry 341 or 393; and Biochemistry 471 or Chemistry 371.
back to top
Graduate Courses

Enrolment in any graduate course requires consent of the Department.

Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.

600-level courses are available with permission to undergraduate students in the final year of their programs.

See also the separate listing of graduate level Chemistry courses.

Biochemistry 641       Independent Study
Independent research or reading project that may include seminars, term papers and training in theoretical and/or laboratory methods.
Course Hours:
3 units; (3-0 or 3S-0)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
back to top
Biochemistry 731       Current Topics in Biochemistry
A discussion of contemporary experimental and theoretical biochemical methods used for the study of drugs and diagnostics at a biomolecular level. Structural analysis, drug design and computational methods will be introduced, as well as modern 'omics' research approaches and current protein drug targets of the pharmaceutical industry.
Course Hours:
3 units; (3-0)
back to top