|
For more information about these courses contact the Department of Physics and Astronomy: .
|
Module for First Year and First Term Second Year Physics Courses
|
Physics
106
|
Module M6 Thermal Physics
|
|
Thermal Physics. Gas laws; kinetic theory of gases; temperature; internal energy; specific heat; energy transfer; laws of thermodynamics; PVT diagrams.
Course Hours:
0.75 units; (12 hours)
Prerequisite(s):
Consent of the Department.
Notes:
Taught as part of Physics 223. Contact the instructor in Physics 223 regarding the schedule.
   Â
|
back to top | |
|
|
|
Introductory Newtonian particle mechanics and rigid bodies in rotational equilibrium: Kinematics, Newton's laws, conservation of momentum and mechanical energy.
Course Hours:
3 units; (4-2)
Prerequisite(s):
One of Mathematics 30-1, 212 or Mathematics 2 (offered by Continuing Education).
Antirequisite(s):
Credit for more than one of Physics 211, 221, or 227 will not be allowed.
Notes:
Physics 211 and 221 differ in their prerequisites, but cover the same material and have the same examinations and tutorial quizzes. Physics 211 has an extra lecture hour per week to deal with certain topics from High School Physics and Mathematics 31. Mathematics 31 is recommended.
|
back to top | |
|
|
Introductory Newtonian particle mechanics and rigid bodies in rotational equilibrium: Kinematics, Newton's laws, conservation of momentum and mechanical energy.
Course Hours:
3 units; (3-2)
Prerequisite(s):
Physics 30; and Mathematics 30-1, 212 or Mathematics 2 (offered by Continuing Education); and Mathematics 31.
Antirequisite(s):
Credit for more than one of Physics 211, 221, or 227 will not be allowed.
|
back to top | |
|
Physics
223
|
Introductory Electromagnetism, and Thermal Physics
|
|
Electrical forces and energy. Static electric fields due to point charges. Parallel-plate capacitor. Simple DC circuits. Lorentz force. Static magnetic fields generated by electric currents. Electromagnetic induction. Gas Laws; kinetic theory of gases; temperature, thermal energy, specific heat; energy transfer; laws of thermodynamics; PVT diagrams.
Course Hours:
3 units; (3-3)
Prerequisite(s):
3 units from Physics 211, 221 or 227.
|
back to top | |
|
Physics
227
|
Classical Physics
|
|
Vector algebra; statics and kinematics of rigid bodies; Newton’s laws of motion; conservation laws; collisions; rotational mechanics; computer modelling of physical systems; approximation methods.
Course Hours:
3 units; (3-2T-2)
Prerequisite(s):
Physics 30; and Mathematics 30-1, 212 or Mathematics 2 (offered by Continuing Education); and Mathematics 31; and admission to a Major or Minor in Physics or Astrophysics or a Major in Chemistry, Natural Science (Physics Concentration), or Environmental Science (Physics Concentration).
Antirequisite(s):
Credit for more than one of Physics 227, 321, 211 or 221 will not be allowed.
|
back to top | |
|
Physics
229
|
Modern Physics
|
|
Special Theory of Relativity. Origins of quantum mechanics. Wave mechanics and applications. Nuclear physics and radioactivity.
Course Hours:
3 units; (3-3)
Prerequisite(s):
3 units from Physics 211, 221, 227 or Engineering 349; and 3 units from Mathematics 249, 265 or 275.
Also known as:
(formerly Physics 325)
|
back to top | |
|
Physics
259
|
Electricity and Magnetism (for students in Engineering)
|
|
Electric and magnetic fields related to charges and current through Maxwell’s equations. Energy stored in fields, potential energy, and voltage. Conductors, insulators, and dielectrics. Resistance, capacitance, and inductance with applications to RC/RL circuits.
Course Hours:
3 units; (4-2)
Prerequisite(s):
Mathematics 211; and 3 units from Mathematics 249, 265 or 275; and admission to the Schulich School of Engineering.
Antirequisite(s):
Credit for Physics 259 and either Physics 255 or 355 will not be allowed.
|
back to top | |
|
Physics
271
|
How Things Work
|
|
Physics behind many common devices will be discussed. Topics will be chosen from among the following: the use of simple and compound machines; waves, sound, acoustics; light and optics; household electric circuitry; magnetism.
Course Hours:
3 units; (3-0)
Antirequisite(s):
Physics Majors, Astrophysics Majors, Natural Sciences Physics Concentrators and Environmental Science Physics Concentrators are not permitted to register in this course.
|
back to top | |
|
|
Physics
303
|
Quantum Mysteries and Paradoxes
|
|
Aims to explain basic quantum phenomena for students outside the physical sciences. Topics covered may include wave-particle duality, quantum interference, as well as the paradoxes of entanglement and quantum nonlocality. Applications such as quantum cryptography and quantum teleportation are discussed, as are the philosophical interpretations of the quantum picture of the world.
Course Hours:
3 units; (3-0)
Antirequisite(s):
Physics Majors, Astrophysics Majors, Natural Sciences Physics Concentrators and Environmental Science Physics Concentrators are not permitted to register in this course.
|
back to top | |
|
Physics
321
|
Harmonic Motion, Waves, and Rotation
|
|
Newtonian mechanics of rigid body rotation. Simple harmonic oscillations. Progressive waves in one dimension. Energy of a wave. Superposition. Standing waves. Fluids.
Course Hours:
3 units; (3-2T)
Prerequisite(s):
3 units from Physics 211, 221 or 227; and Mathematics 211 or 213; and Mathematics 267 or 277.
|
back to top | |
|
Physics
323
|
Optics and Electromagnetism
|
|
Static electric fields due to charge distributions. Static magnetic fields due to current distributions. Time-dependent behaviour of capacitors and inductances. Geometrical optics: Thin lenses and curved mirrors. Physical optics: Interference and diffraction.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
Physics 223 and 3 units from Physics 211, 221 or 227; and 3 units from Mathematics 249, 265 or 275.
|
back to top | |
|
Physics
341
|
Classical Mechanics I
|
|
Conservative and non-conservative forces; forced and damped harmonic oscillations; phase-space analysis; central force motion and scattering; non-inertial frames; applications of ordinary differential equations.
Course Hours:
3 units; (3-3/2-2T)
Prerequisite(s):
3 units from Physics 211, 221 or 227; and Mathematics 211 or 213; and Mathematics 267 or 277.
Antirequisite(s):
Credit for Physics 341 and Engineering 349 will not be allowed.
|
back to top | |
|
Physics
343
|
Classical Mechanics II
|
|
Lagrangian and Hamiltonian mechanics; general rotations of rigid bodies; moment of inertia tensor; eigenvalues and eigenvectors; perturbation theory; applications to multiple-particle systems.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 341.
Antirequisite(s):
Credit for Physics 343 and Physics Engineering 383 will not be allowed.
|
back to top | |
|
Physics
355
|
Electromagnetic Theory I
|
|
Electrostatics, DC circuits, calculation of magnetic intensity from currents, motion of charged particles in electric and magnetic fields, electromagnetic induction, transient effects in capacitors and inductors, electric and magnetic properties of materials.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
3 units from Physics 211, 221 or 227; and Mathematics 375 or 376.
Antirequisite(s):
Credit for Physics 355 and 259 will not be allowed
Also known as:
(formerly Physics 255)
|
back to top | |
|
Physics
365
|
Acoustics, Optics and Modern Physics (for students in Engineering)
|
|
Wave motion as applied to acoustics and physical optics. Wave-particle duality applied to light and matter; electron energy levels of atoms and crystals.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
Mathematics 277 and Physics 259 and admission to a program in Engineering.Ìý
Antirequisite(s):
Credit for Physics 365 and 369 will not be allowed. Not open to Geomatics Engineering students.
|
back to top | |
|
Physics
369
|
Acoustics, Optics and Radiation (for students in Engineering)
|
|
Wave motion as applied to acoustics, geometric and physical optics, and radiant energy transfer. Traditional and modern applications.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
Mathematics 277 and Physics 259 and admission to a program in Engineering.
Antirequisite(s):
Credit for Physics 369 and 365 will not be allowed. Not open to Electrical Engineering students.
|
back to top | |
|
Physics
371
|
Introduction to Energy
|
|
Energy and power. Sources of energy such as wind power, solar power, nuclear power, geothermal energy and fossil fuels and related limitations. Generation and distribution of electricity.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
375
|
Introduction to Optics and Waves
|
|
Geometrical Optics: lenses, mirrors, and other basic optical components. Wave motion. Description of light as a wave. Fermat’s principle. Refraction, scattering, interference, diffraction, and polarization. Optical instruments (including telescopes and microscopes). Lasers and fibre optics if time allows.
Course Hours:
3 units; (3-3/2)
Prerequisite(s):
3 units from Physics 211, 221 or 227; and Mathematics 267 or 277.
|
back to top | |
|
|
Physics
397
|
Applied Physics Laboratory I
|
|
Basic laboratory electronics, vacuum systems, and optical devices. Introduction to experimental control, data collection, and analysis. Fundamentals of error analysis and error propagation.
Course Hours:
3 units; (2-1T-3)
Prerequisite(s):
Physics 229 or 325.
Antirequisite(s):
Credit for Physics 397 and Engineering Physics 388 will not be allowed.
|
back to top | |
|
Physics
435
|
Mathematical Methods in Physics
|
|
Partial differential equations. Fourier analysis. Laplace Transforms. Special functions and orthogonal polynomials. Complex analysis. Applications in Physics and Astronomy
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 343 and Mathematics 367; and one Mathematics 375 or 376.
Antirequisite(s):
Credit for Physics 435 and Mathematics 433 or Physics Engineering 435 will not be allowed.
|
back to top | |
|
|
Physics
449
|
Statistical Mechanics I
|
|
State-counting; classical distributions and probability theory; origins and role of entropy; equilibrium; ensemble theory; concepts of work, heat, and temperature; equations of state; heat capacity; equipartition theorem; engines; laws of thermodynamics; non-equilibrium systems; Maxwell-Boltzmann distribution; thermodynamic potentials.
Course Hours:
3 units; (3-1T-0)
Prerequisite(s):
Physics 229 or 325; and Mathematics 375 or 376; and either Physics 343 and Mathematics 367; or Physics Engineering 383.
|
back to top | |
|
Physics
451
|
Statistical Mechanics II
|
|
Quantum statistical mechanics; bosons and fermions; quantum counting; classical-quantum transition; blackbody radiation; applications of statistical mechanics to phase transitions, critical phenomena and complex systems, Ising model, mean-field theory.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 449.
|
back to top | |
|
|
|
Physics
481
|
Computational Physics II
|
|
Random walks, cellular automata, pseudo-random number generation, Monte Carlo methods, numerical solution of ordinary and partial differential equations, introduction to Fourier transforms.
Course Hours:
3 units; (1-3)
Prerequisite(s):
Physics 381 or Computer Engineering 335; and Mathematics 375 or 376.
|
back to top | |
|
Physics
497
|
Applied Physics Laboratory II
|
|
Intermediate laboratory electronics. AC circuit theory and semiconductor devices, including operational amplifiers. Digital sampling theory and frequency-domain signal processing. Computer automation of experimental control, data collection, and analysis, including error analysis and error propagation.
Course Hours:
3 units; (2-6)
Prerequisite(s):
Physics 397; and Mathematics 433 or Physics 435.
Antirequisite(s):
Credit for Physics 497 and Engineering Physics 488 will not be allowed.
|
back to top | |
|
|
Lorentz transformations in classical mechanics; relativistic kinematics; spacetime diagrams; relativistic energy and momentum conservation; Geometrical interpretation; applications of relativistic kinematics; four-vector formalism and tensors; introduction to general relativity; applications.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 455 or Electrical Engineering 475.
|
back to top | |
|
|
|
Physics
521
|
Non-linear Dynamics and Chaos
|
|
Introduction to non-linear dynamical systems: Phase space representation, bifurcations, normal forms, non-linear oscillators, deterministic chaos, attractors, fractals, universality, renormalization, and synchronization.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 381 and 449; and Physics 435 or Mathematics 433.
|
back to top | |
|
Physics
543
|
Quantum Mechanics II
|
|
Intermediate quantum mechanics. Theory of angular momentum, symmetries, perturbation theory. Identical particles. Applications to atomic physics, spectroscopy. Entanglement.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 443.
|
back to top | |
|
Physics
561
|
Stable and Radioactive Isotope Studies, Fundamentals
|
|
A multidisciplinary course. Topics include nucleosynthesis, radioactive decay, isotope exchange phenomena, kinetic isotope effects, tracer techniques, molecular spectra and instrumentation.
Course Hours:
3 units; (3-1)
Prerequisite(s):
Consent of the Department.
|
back to top | |
|
Physics
577
|
Implementations of Quantum Information
|
|
Proposals and realizations of quantum information tasks including quantum computation, quantum communication, and quantum cryptography in optical, atomic, molecular, and solid state systems.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 455 and 543.
Antirequisite(s):
Credit for Physics 577 and 677 will not be allowed.
|
back to top | |
|
Physics
581
|
Computational Physics III
|
|
Linear inversion, spectral methods, calling external libraries, data formats, parallelization, numeric and symbolic programming languages.
Course Hours:
3 units; (1-3)
Prerequisite(s):
Physics 481; and Mathematics 433, Physics 435 or Physics Engineering 435.
|
back to top | |
|
Physics
593
|
Topics in Contemporary Physics
|
|
Study in advanced topics that may include reading projects, seminars, lectures, term papers and other aspects of training in theory or research methodology
Course Hours:
3 units; (3-0) or (0-6)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Physics
597
|
Senior Physics Laboratory
|
|
Selected advanced experiments. Where possible, students may choose those experiments most suited to their interests. Development of technical and computer-based skills, technical writing and presentation skills.
Course Hours:
3 units; (1-6)
Prerequisite(s):
Physics 497.
|
back to top | |
|
Physics
598
|
Honours Research Thesis
|
|
Each student will be assigned a project in consultation with a supervisor. Written reports and oral presentations are required.
Course Hours:
6 units; (0-9)
Prerequisite(s):
Physics 443 and 449 and 455 and consent of the Department.
|
back to top | |
|
Physics
599
|
Senior Research Thesis
|
|
Each student will be assigned a project in consultation with a supervisor. Written reports and oral presentations are required.
Course Hours:
3 units; (0-9)
Prerequisite(s):
Consent of the Department.
Notes:
A maximum of 6 units may be taken.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Graduate Courses
Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.
|
Physics
603
|
Experimental Methods of Physics
|
|
Instrumentation for physical experiments. General philosophy of experimentation; signal processes; signal processing methods; instrument design and control; data acquisition and storage; specific detection methods.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
605
|
Advanced Data Analysis
|
|
Methods of extraction of significant information from experimental data degraded by noise. Parametric and non-parametric statistical methods; curve fitting; spectral analysis; filtering, sampling, convolution and deconvolution techniques.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
609
|
Advanced Classical Mechanics
|
|
Variational principles, Lagrange's equations, Noether's theorem. Hamilton's equations and canonical transformations. Hamilton-Jacobi theory, action-angle variables. Perturbation theory.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
611
|
Statistical Physics
|
|
Classical and quantum ensemble theory applied to interacting systems: real gases, spin lattices, phase transitions. Kinetic theory: Boltzmann equation, transport processes, irreversible processes and fluctuations.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
613
|
Electrodynamics
|
|
Interaction between charged particles and the electromagnetic field in relativistic formulation. Scattering and energy losses of charged particles. Radiation by charged particles.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
615
|
Non-Relativistic Quantum Mechanics
|
|
Mathematical formalism of quantum mechanics. Topics may include addition of angular momenta, Clebsch-Gordan coefficients, Wigner-Eckart theorem; charged particles in electric and magnetic fields; quantum operators; approximation methods; scattering; quantum nonlocality, Einstein-Podolsky-Rosen paradox, Bell's theorem.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
617
|
Relativistic Quantum Mechanics
|
|
Klein-Gordon and Dirac equations; Dirac spinor and the adjoint spinor; charge (C), parity (P) and (T) transformations and CPT symmetry; relativistic corrections to atomic spectra.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
619
|
Statistical Physics II
|
|
Topics Theories of equilibrium and non-equilibrium critical phenomena and methods to study fluctuating systems selected from the following list of topics: Percolation, scaling theory, phase transitions, Landau-Ginzburg theory, lattice models, Monte Carlo methods, renormalization group, self-organized criticality, theory of random graphs; Brownian motion, random walks and diffusion, Fokker-Planck-Equation, Markov processes, stochastic differential equations, first passage times.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Physics 611.Ìý
|
back to top | |
|
Physics
621
|
Nonlinear Dynamics and Pattern Formation
|
|
Topics: Introduction to pattern formation and self-organization in nature: Reaction-diffusion systems, hydrodynamical systems, bistable media, excitable and oscillatory media, stability analysis, bifurcations, pattern selection, amplitude equations and normal forms, fronts, traveling waves, topological defects, spiral waves, spatiotemporal chaos, defect-mediated turbulence, spatiotemporal point processes.
Course Hours:
3 units; (3-0)
|
back to top | |
|
|
An introduction to Einstein's theory of gravitation. Applications to the solar system, black holes, and cosmology.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
663
|
Applications of Stable Isotopes
|
|
Application of stable isotope techniques with special focus on Hydrogeology, Geology and Environmental Sciences. The use of isotopes to understand the water, carbon, nitrogen and sulphur cycles is demonstrated. Topics include hydrology, paleoclimates, geothermometry, fossil fuels exploration and recovery, pollutant tracing, food webs, forensic investigations, among others.
Course Hours:
3 units; (2-1)
Prerequisite(s):
Consent of the Department.
Also known as:
(Geology 663)
|
back to top | |
|
Physics
671
|
Atomic and Molecular Spectroscopy
|
|
Atomic structure and spectra. Rotational, vibrational and electronic spectra of diatomic molecules, including microwave, infrared, Raman and visible/ultraviolet spectroscopic techniques. Hund's coupling cases. Polyatomic molecular spectroscopy. Examples from astronomy and upper atmosphere/space physics.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
673
|
Quantum Optics
|
|
Light-matter interaction at the quantum level, field quantization, quantum states of light, quasiprobability distributions, homodyne detection, photon detection, multi-photon interference, cavity quantum electrodynamics, open quantum systems, entanglement.
Course Hours:
3 units; (3-0)
|
back to top | |
|
Physics
677
|
Implementations of Quantum Information
|
|
Proposals and realizations of quantum information tasks including quantum computation, quantum communication, and quantum cryptography in optical, atomic, molecular, and solid state systems.
Course Hours:
3 units; (3-0)
Prerequisite(s):
Consent of the Department.
|
back to top | |
|
Physics
691
|
Scientific Communication Skills
|
|
Required, multi-component, program of courses for all graduate students in the Department of Physics and Astronomy designed to assist students in improving their scientific oral and written communication skills.
691.11. Effective Scientific Speaking
691.12. Graduate Seminar
691.13. Effective Scientific Writing
Course Hours:
1.5 units; (2S-0)
Prerequisite(s):
Admission to a Graduate-level Physics and Astronomy program.
MAY BE REPEATED FOR CREDIT
NOT INCLUDED IN GPA
|
back to top | |
|
Physics
698
|
Special Topics
|
|
Topics include: Astrophysics, Medical Physics, Physics, Radiation Oncology Physics, Space Physics,
Computational Neuroscience, and Medical Imaging.
Course Hours:
3 units; (3-0) or (3-3)
Prerequisite(s):
Admission to a Graduate-level Physics and Astronomy program.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|
Physics
699
|
Project in Physics
|
|
Each student will select a project in consultation with a supervisor. The project may be experimental or theoretical in nature. A written report and an oral presentation are required.
Course Hours:
3 units; (0-9)
|
back to top | |
|
Physics
701
|
Independent Study
|
|
Each student will select a topic of study in consultation with a supervisor. The topic will be in the research area of the staff member. This course may not be used to meet the regular course requirements in the MSc and PhD programs.
Course Hours:
3 units; (0-9)
Prerequisite(s):
Consent of the Department.
MAY BE REPEATED FOR CREDIT
|
back to top | |
|